Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLOS Glob Public Health ; 3(5): e0001675, 2023.
Article in English | MEDLINE | ID: covidwho-2317515

ABSTRACT

Causes of non-malarial fevers in sub-Saharan Africa remain understudied. We hypothesized that metagenomic next-generation sequencing (mNGS), which allows for broad genomic-level detection of infectious agents in a biological sample, can systematically identify potential causes of non-malarial fevers. The 212 participants in this study were of all ages and were enrolled in a longitudinal malaria cohort in eastern Uganda. Between December 2020 and August 2021, respiratory swabs and plasma samples were collected at 313 study visits where participants presented with fever and were negative for malaria by microscopy. Samples were analyzed using CZ ID, a web-based platform for microbial detection in mNGS data. Overall, viral pathogens were detected at 123 of 313 visits (39%). SARS-CoV-2 was detected at 11 visits, from which full viral genomes were recovered from nine. Other prevalent viruses included Influenza A (14 visits), RSV (12 visits), and three of the four strains of seasonal coronaviruses (6 visits). Notably, 11 influenza cases occurred between May and July 2021, coinciding with when the Delta variant of SARS-CoV-2 was circulating in this population. The primary limitation of this study is that we were unable to estimate the contribution of bacterial microbes to non-malarial fevers, due to the difficulty of distinguishing bacterial microbes that were pathogenic from those that were commensal or contaminants. These results revealed the co-circulation of multiple viral pathogens likely associated with fever in the cohort during this time period. This study illustrates the utility of mNGS in elucidating the multiple potential causes of non-malarial febrile illness. A better understanding of the pathogen landscape in different settings and age groups could aid in informing diagnostics, case management, and public health surveillance systems.

2.
EClinicalMedicine ; 27: 100518, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-730421

ABSTRACT

BACKGROUND: Most data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have been presented as case series without comparison to patients with other acute respiratory illnesses. METHODS: We examined emergency department patients between February 3 and March 31, 2020 with an acute respiratory illness who were tested for SARS-CoV-2. We determined COVID-19 status by PCR and metagenomic next generation sequencing (mNGS). We compared clinical presentation, diagnostics, treatment, and outcomes. FINDINGS: Among 316 patients, 33 tested positive for SARS-CoV-2; 31 without COVID-19 tested positive for another respiratory virus. Among patients with additional viral testing (27/33), no SARS-CoV-2 co-infections were identified. Compared to those who tested negative, patients with COVID-19 reported longer symptoms duration (median 7d vs. 3d, p < 0.001). Patients with COVID-19 were more often hospitalized (79% vs. 56%, p = 0.014). When hospitalized, patients with COVID-19 had longer hospitalizations (median 10.7d vs. 4.7d, p < 0.001) and more often developed ARDS (23% vs. 3%, p < 0.001). Most comorbidities, medications, symptoms, vital signs, laboratories, treatments, and outcomes did not differ by COVID-19 status. INTERPRETATION: While we found differences in clinical features of COVID-19 compared to other acute respiratory illnesses, there was significant overlap in presentation and comorbidities. Patients with COVID-19 were more likely to be admitted to the hospital, have longer hospitalizations and develop ARDS, and were unlikely to have co-existent viral infections. FUNDING: National Center for Advancing Translational Sciences, National Heart Lung Blood Institute, National Institute of Allergy and Infectious Diseases, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative.

SELECTION OF CITATIONS
SEARCH DETAIL